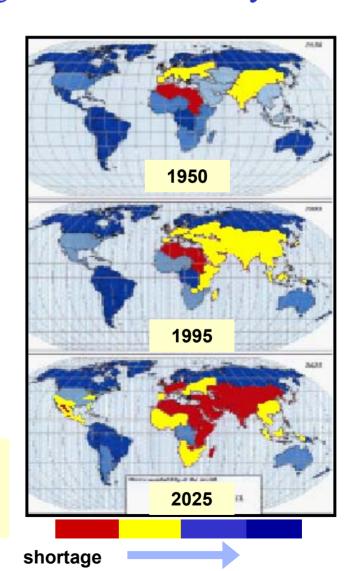
Desalination Technology Roadmap and Research Facility Development

Sponsors:

Sandia National Labs

Project Managers
Thomas Hinkebein
Mike Hightower

Bureau of Reclamation


Project Managers Kevin Price, Thomas Jennings

Over half the world's population will face severe water shortage in the next 50 years.

- In 1990, poor water supply and sanitation was the 2nd leading cause of death and disability worldwide.
- Over 50% of world's major rivers are dry or heavily polluted.
- By 2025, 20% more fresh water will be needed for irrigation and 40% more for cities to maintain current per capita water levels.
- **NONTRADITIONAL** water resources will need to be used to address these shortages.

"Water promises to be to the 21st century what oil was to the 20th century: the precious commodity that determines the wealth of nations."

Fortune Magazine, May 15, 2000

Roadmap Development - Vision

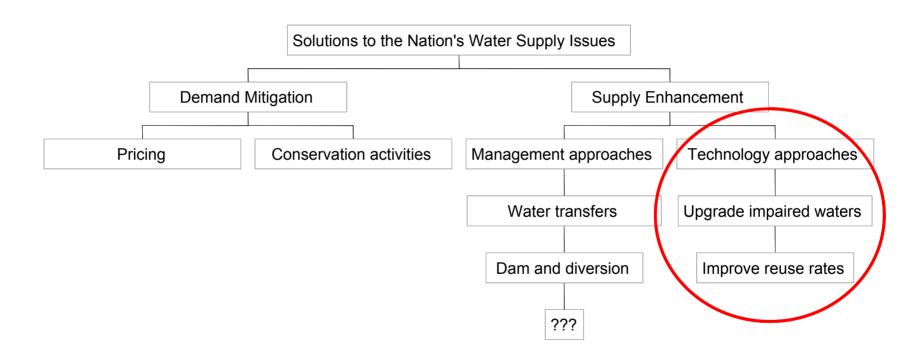
By 2020, water purification and desalination technologies will contribute significantly to assuring a safe, sustainable, affordable, and adequate water supply for the Unites States.

Safe:

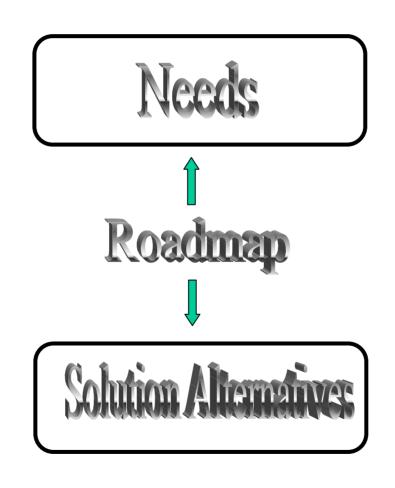
- Meet drinking water standards
- Agriculture and industry standards
- Security

Sustainable:

Water table decline can lead to salinity increase


Affordable:

Future water cost comparable today's


Adequate:

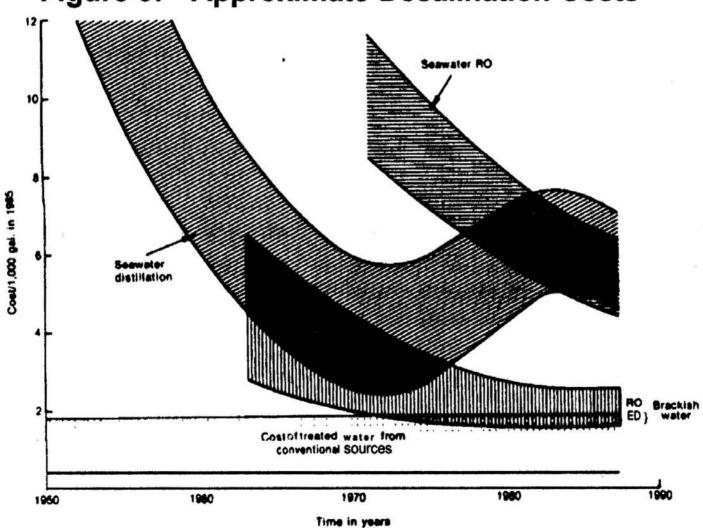
- Local and regional availability
- Episodic shortages (droughts).

Hierarchy of the nation's water solution toolbox

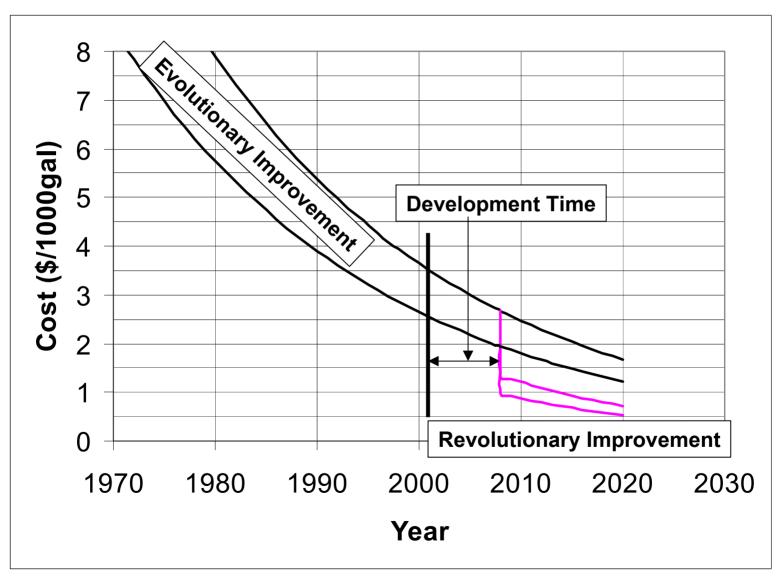
Structure of the Roadmap Process

Case Studies a Basis for Needs

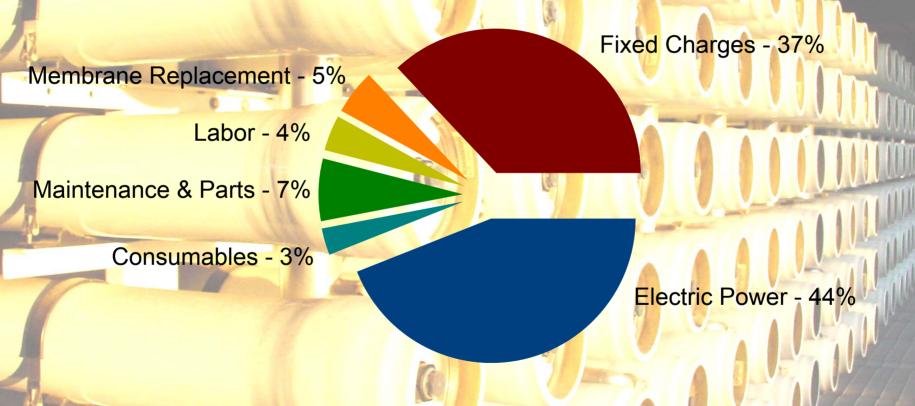
Urban Coastal



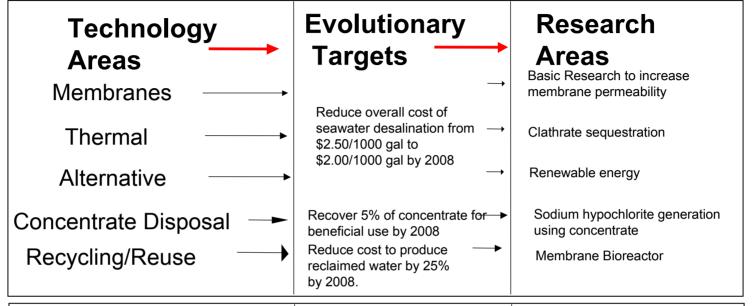
Inland Urban Inland Impaired Waters

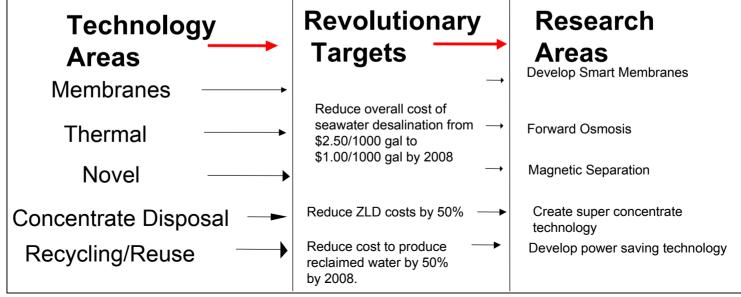

- Develop new sources
- Reduce costs
- Protect quality
- Reclaim waters
- Develop concentrate disposal

Historical Desalination Costs



Effect of Evolutionary and Revolutionary Technologies

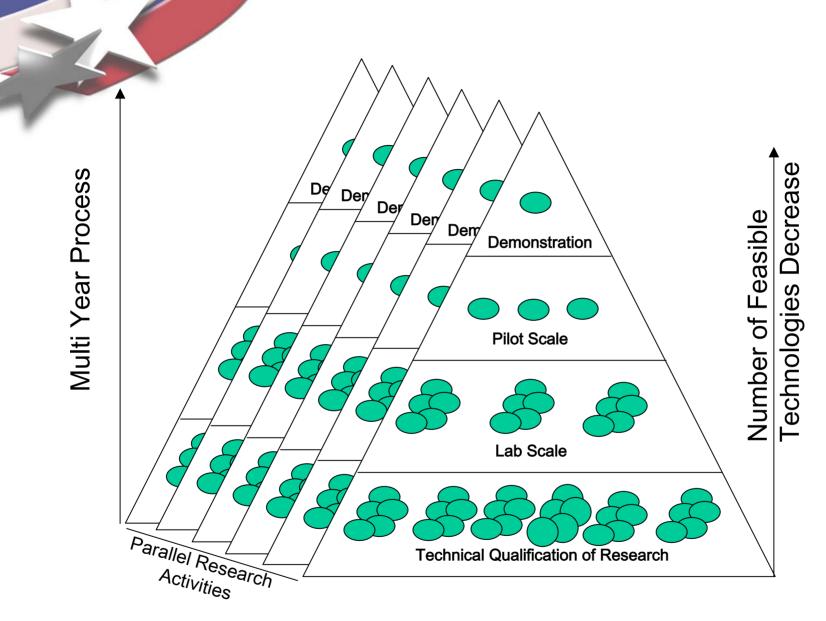

Evolutionary Approach Seawater RO – Opportunity for Energy and Pretreat Savings


R. Semiat, Water International, Vol. 25, 54, (2000).

Pretreatment can be up to 30% of Total Operating Costs
K.S. Speigler and Y.M. El-Sayed, <u>A Desalination Primer</u>, Balaban Desalination Publications,
Santa Maria Imbaro, Italy (1994).

NEEDS → Objectives (Reduce Costs)

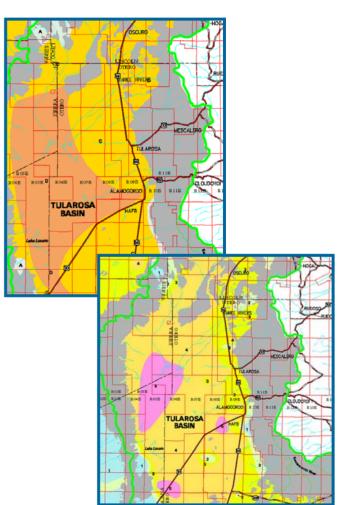
Revolutionary Approach


Series of Screens

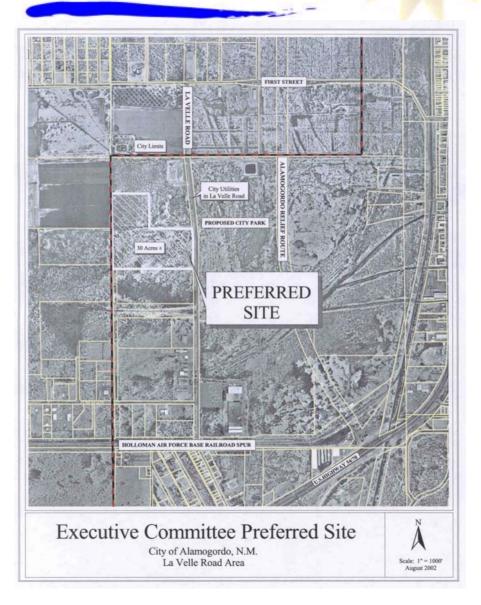
Technical qualification of research – M&E Balances

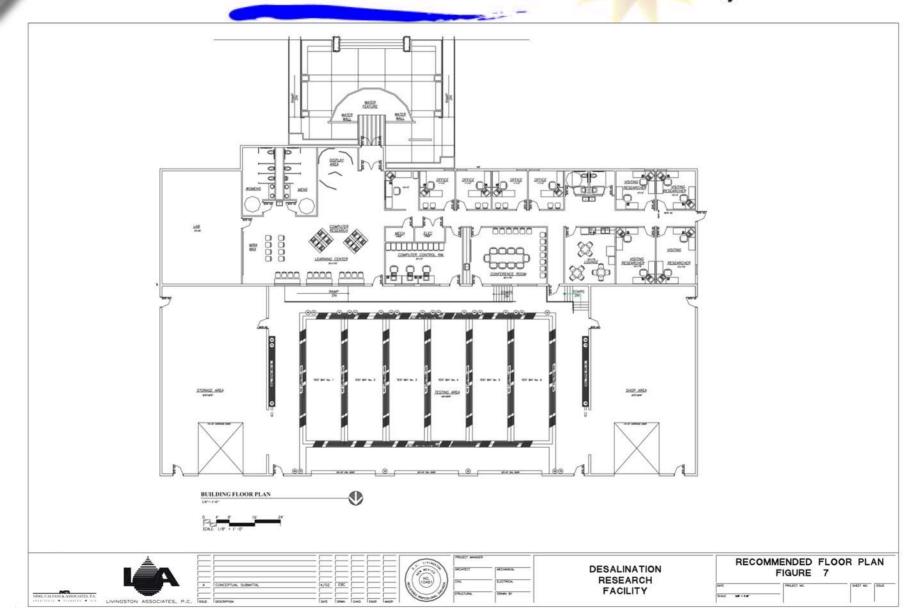
Lab Scale Evaluations

Pilot Scale Evaluations


Demonstrations

In order to have demonstration scale experiments for the National Desal Centers program, there must be a major program to develop worthy candidate revolutionary technologies. Without this program, only evolutionary research will be available for testing.


Study Objectives


- The BOR and Sandia received congressional funding in FY02 to:
 - Identify desalination research opportunities for a Tularosa Basin facility
 - Identify a regional, national, and international role that would complement other "national water research centers"
- Develop a preliminary facility design and operation and management plans
- Complete draft study by July 2002
- Develop facility design/build plan for FY03 start of construction

Design Highlights

- 3 primary site locations identified with easy access, good visibility, water availability
- 20-30 acre sites with areas for concentrate reuse and beneficial use research, renewable energy desalination research, and ~13,000 square foot desalination research facility
- Desalination facility: 6 test bays for pilot system testing at 30 gpm, control room, water lab, research offices, resource/education room, conference room, operations viewing and tour areas, passive solar building
- Shop and chemical storage areas and exterior pads for large scale and renewable energy applications

NEED: Reduce Production Cost of Water

NEAR-TERM

Research Areas

- Computational Modeling
 - Develop system-optimization model for membrane-based facilities
 - Investigate parameter sensitivities in computational models
 - Develop computational modeling capabilities for distillation, evaporation, and vapor compression plants
- Hybrid and combined systems
 - Cogeneration (water and power from the same plant)
 - Membrane and thermal combinations
 - Solar ponds (combined concentrate disposal/energy production)
 - Combined driving (magnetic- and pressuredriven movement of water through membranes)
- Low-grade heat (using waste heat for thermal desalination)
- Operational Research
 - Develop improved scale inhibitors
 - Develop/evaluate non-standard RO train configurations

Near-term CSRs

- ↓ capital costs by 20%
- ↓ operating costs by 20%
- ↓ membrane train costs by 10%
- ↓ pretreatment costs by 25% for reclaimed waters

Mid/long-term CSRs

- ↓ capital costs by 50%
- ↓ operating costs by 50%

MID/LONG-TERM

Research Areas

- Materials Research
 - Replacement for titanium components
 - Corrosion-resistant composites for pumps/piping
- Net zero-energy desal plant (energy-self-contained)
- Automation (lower labor costs)
 - Remote security monitors
- · Economic and process modeling
 - Predict desal costs vs. cost of water from other sources
- Membrane Research
 - Develop completely fouling-resistant membranes
 - Develop completely oxidant-resistant membranes
 - Develop membranes that operate in a range of pHs (reduce the need for mechanical/chemical cleaning)

NEED: Increase Production Efficiency

(throughput, component lifetime, quality)

NEAR-TERM

Research Areas

- Basic Research
 - Develop mechanistic/fundamental knowledge of membrane functions
- · Water Quality
 - · Develop better surrogates for trace organics
 - Improve removal of pharmaceuticals/ endocrine disruptors
- Throughput
 - Develop materials that can (increase the membrane module operational envelope
 - · Improve permeability/minimize resistance
 - Develop membrane fouling indicators
- Novel, efficient processes
 - Ultrasonic/Supersonic
 - Capacitance
 - · Ion sorption
 - · Sodium pump/biomimetic
 - Magnetics
- · Enhanced thermal desal processes
 - · Water harvesting from air
 - · Enhanced evaporation
 - · Forward osmosis

Near-term CSRs

- ↑ energy efficiency by 20%
- Remove 60% of synthetic compounds
- ↑ throughput rates by 10%
- Sense water quality and contaminant removal
- Achieve on-demand contaminant removal

Mid-long-term CSRs

- ↑ energy efficiency by 50%
- •

MID/LONG-TERM

Research Areas

- · High slurry filtration with electro-chemistry
- Ion Sorption/Zeolite crystallization
- · Biomemetic systems
- · Advanced membranes/separation
 - · Non-traditional materials
 - Biologic membranes/separation systems
 - · Ion selective membranes
- · Pre-treatment research
 - · Magnetic/ionic methods to attract particulates/microbes
- Controls
 - 'Smart' controls that adjust pretreatment/membranes in response to feed water quality fluctuations
- Sensors
 - on-line viral analyzer
 - · In-situ sensors to detect biofilms, fouling, scale formation

~ 2003 ~ 2008 ~ 2012 ~ 2020 Year

NEED: Address Concentrate Disposal Issues

NEAR-TERM

Research Areas

- · Beneficial use
 - Solar ponds for energy and concentrate management
 - Sodium hypochlorite generation using concentrate
- Concentrate treatment
 - Reduce concentrations of fluorides, radionuclides, pesticides, metals
 - · Bioengineering contaminant removal
 - Develop a "super concentrate" technology
- Engineered ecology/bioengineering
 - Engineer disposal so that it does not harm ecosystems, and if possible benefits them
 - Natural analogs to current treatment/Constructed wetlands
- Evaporation
 - Enhanced mechanisms to encourage or enhance evaporation
 - Health or environmental impacts of enhanced evaporation
- Discharge
- Develop models of dispersion, including tidal influence where appropriate
- Shallow receiving water diffuser research

Near-term CSRs

- Recover 5% of concentrate for beneficial use
- \(\psi \) reject percentage by 17% (50% for brackish water)
- Maintain cost of concentrate disposal over time
- volume of concentrate disposed by 500/2
- Maintain environmental compatibili

Mid/long-term CSRs

- Recover 20% of concentrate for beneficial use
- ↓ reject percentage by 85% (for brackish water)

MID/LONG-TERM

Research Areas

- · Beneficial use
 - Develop bugs that solve salt problem and produce a useful product
 - Solar ponds
 - · Identify industries that need high salinity water
- Toxicity assessment and response
 - Research in reduction of toxicity of concentrate
 - Differentiation of the causes of biotoxicity and concentrate treatment methods
- · Innovative concentrate management
 - · Decentralized (Point of Use) Treatment and recycling
 - Engineered ecologies/Creation of a sustainable saline ecosystem
- Treatment
 - Remove specific contaminants/Reduce costs of zero level discharge
- Creation avoidance
 - Develop treatment processes that do not produce concentrate

 ~ 2003 ~ 2012 ~ 2020

NEED: Increase Reclamation and Reuse of Water

NEAR-TERM

Research Areas

- · Public health issues
 - Structure/activity relationships (NDMA, other)
 - Methods of removing pharmaceuticals/ endocrine disruptors
- Ensuring quality
 - · Develop better surrogates for trace organics
 - · Decrease the cost of sampling
 - Develop next-generation sensors
 - · Investigate 'blending' issues
- Treatment technologies
 - Research membrane bioreactors
 - Investigate advanced filtration approaches
 - Develop biological (disinfectant) coatings
 - Examine challenges presented by effluentdominated streams in the West
- Storage/post-treatment uses
 - Constructed wetlands
 - Generate models to predict migration through/recovery from aquifers

Near-term CSRs

- cost of use of reclaimed waters by 25%
- † stability of reclaimed waters over time (reduce time-induced degradation)
- \(^\) volume of water available for aquifer recharge
- \tag{knowledge base to allow more aquifer storage}

Mid/long-term CSRs

MID/LONG-TERM

Research Areas

- Economics
 - Document the economics of water reuse for various applications
- Controls
 - Develop automated sensors/controls that adjust pretreatment/membranes in response to feed water quality fluctuations
- Treatment
 - Optimize filter design
 - Develop enhanced membrane bioreactor technology
- Quality
 - Develop set of organic chemical surrogates acceptable to public for potable reuse/ develop a sensor for the surrogate organic
 - Generate better scientific underpinnings for dealing with microbial contaminants
- · Protection of human health
 - Develop the QSAR to predict removal or emerging contaminants

~ 2003 ~ 2008 ~ 2012 ~ 2020